# Assessment of Biofumigation for Weed Control in Organic Agriculture



Maxime Lefebvre <sup>1,2</sup>

Maryse Leblanc <sup>1</sup>

Alan K. Watson <sup>2</sup>

- 1. Organic Agriculture Innovation Platform, Research and Development Institute for the Agri-environment (IRDA), QC.
- 2. Department of Plant Science, McGill University, QC.



#### Presentation Outline

- Biofumigation
- Impact on weeds
- Objectives

#### 1: Greenhouse experiment 2: Field experiment

- Materials and methods
- Results
  - Seedling survival
  - Seeds Reproductive effort

Key messages



- Materials and methods
- Results
  - Biofumigant effect ITC analyses
  - Spring emergence
  - Weed growth and establishment during green manure

# Biofumigation





Michel et al., , 2000. Vitic. Arboric. Hortic. 39 (2): 145-150

Allelopathy current trends and future applications, Cheema, 2013.



# Impact on weed population dynamics

- Establishment
   of some weed
   seedlings
- Interference during weed growth (reduce biomass)





Gardarin et al. 2012. Ecological Modelling 240:123-138

Benech-Arnold et al., 2000. Field Crops Research 67(2):105-122

Inderjit et al. 2011. Trends in Ecology & Evolution 26(12):655-662

Haramoto et Galland, 2004. Renew. Agric. And Food Syst.. 19 (4) 187-198

Peterson et al, 2001. Agronomy journal. 93 (1) 37-43

## Biofumigation – Needs investigation

#### Establishment + Interference

- Is there a moment where the seedbank is more susceptible
- Establishment by season, year after year
- Cumulative impact or changes in weed community

#### Adaptability

- Impact on surviving weeds and subsequent generation
- How biofumigation affect fitness of surviving plants
- Adaptability to ITCs/biofumigation



# Objectives

#### 1 – Greenhouse experiment

Determine how biofumigation acts on fitness (survival, reproduction of weeds

#### 2 – Field experiment

- Assess the <u>susceptibility</u> of the weed seedbank to biofumigation <u>through the seasons</u>
- Assess the effect of <u>repeated</u> biofumigation treatments <u>within</u> the same year on weed populations



#### Presentation Outline

- Biofumigation
- Impact on weeds
- Objectives

#### 1: Greenhouse experiment 2: Field experiment

- Materials and methods
- Results
  - Seedling survival
  - Seeds Reproductive effort

Key messages



- Materials and methods
- Results
  - Biofumigant effect ITC analyses
  - Spring emergence
  - Weed growth and establishment during green manure

## Experiment 1 - Materials and methods

- In Petri dishes and greenhouse
- 2 species: Ambrosia artemisiifolia and Abutilon theophrasti
- 2 biofumigation rates + 1 control
  - For A. artemisiifolia (low = X/2 = 0.228 g/Petri; high = X = 0.456 g/Petri)
  - For A. theophrasti (low = X/3 = 0.152 g/Petri; high = X/2 = 0.228 g/Petri)
- 50 seeds/Petri, 15 Petri/treatment



# Results – Seedling survival

Survival of transferred germinated seeds from Petri dishes to pots in greenhouse after biofumigation treatment.

|                | Treatment | Survival (% ± S.E.) |
|----------------|-----------|---------------------|
| Abutilon       | Control   | 96.7 (1.1) a        |
|                | X/3       | 27.4 (4.9) b        |
| theophrasti    | X/2       | 11.2 (5.0) c        |
| Ambrosia       | Control   | 92.0 (1.8) a        |
|                | X/2       | 79.7 (2.0) b        |
| artemisiifolia | X         | 76.5 (2.4) b        |



#### Results – Seeds

Biofumigated surviving plants or untreated plants of *Abutilon theophrasti* and *Ambrosia artemisiifolia* reproduction parameters and seeds number and weight (± S.E.).

|                         |         | Nb seeds<br>plant <sup>-1</sup> | Total weight of seeds plant <sup>-1</sup> | Weight of<br>100 seeds<br>plant <sup>-1</sup> | Reproductive effort (seeds g of plant <sup>-1</sup> ) |
|-------------------------|---------|---------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
|                         | Control | 1272.9 b<br>(33.8)              | 11.31 b<br>(0.25)                         | 0.890 a<br>(0.008)                            | 0.31 b<br>(0.02)                                      |
| Abutilon<br>theophrasti | X/3     | 1536.7 a<br>(44.1)              | 13.01 a<br>(0.36)                         | 0.847 b<br>(0.008)                            | 0.35 ab<br>(0.02)                                     |
|                         | X/2     | 1349.1 b<br>(84.2)              | 11.51 b<br>(0.64)                         | 0.856 b<br>(0.019)                            | 0.46 a<br>(0.05)                                      |

#### **Presentation Outline**

- Biofumigation
- Impact on weeds
- Objectives
  - 1: Greenhouse experiment
    - Materials and methods
    - Results
      - Seedling survival
      - Seeds Reproductive effort

• Keymessages



#### 2: Field experiment

- Materials and methods
- Results
  - Biofumigant effect ITC analyses
  - Spring emergence
  - Weed growth and establishment during green manure

### Experiment 2 - Materials and methods



# **Treatments**

|           | Treatment                       | Description (plot management)    |         |                      |                                  |               |
|-----------|---------------------------------|----------------------------------|---------|----------------------|----------------------------------|---------------|
| rreatment |                                 | Spring                           |         | Summer               | Fall                             |               |
| 1)        | Spring biofumigation            | Green manure<br><i>B. juncea</i> |         | Crop                 | Green manure<br>Oat              |               |
| 2)        | Fall biofumigation              | Green manure<br>Oat              | ATION » | Crop                 | Green manure<br><i>B. juncea</i> | « NOIT        |
| 3)        | Spring and fall biofumigation   | Green manure<br><i>B. juncea</i> | UMIGA   | Crop                 | Green manure<br><i>B. juncea</i> | BIOFUMIGATION |
| 4)        | Without biofumigation (control) | Green manure<br>Oat              | « BIOF  | Crop                 | Green manure<br>Oat              | « BIOF        |
| 5)        | Weedy check                     | No green manure                  |         | Crop without weeding | No green<br>manure               |               |





# Variables measured

Weed abundance over time and weed biomass

Chemical analyses of ITCs





#### Results – ITCs

| 2014 | Sample | Saison | allyl ITC<br>ug/g | butyl ITC<br>ug/g |
|------|--------|--------|-------------------|-------------------|
|      | Plant  | Spring | 69.90             | 43.01             |

2000 to 2500

Fertilisation: Sul-po-mag (0-0-22): 278 Kg/ha, Dolomitique lime: 2000 Kg/ha

| 2015 | Sample  | Saison | allyl ITC | butyl ITC |
|------|---------|--------|-----------|-----------|
|      | Janipie | Jaison | ug/g      | ug/g      |
|      | Plant   | Spring | 714.42    | 4.21      |

Fertilisation: Sul-po-mag (0-0-22): 278 Kg/ha

| 2016 | Sample Saiso | Soison | allyl ITC | butyl ITC |
|------|--------------|--------|-----------|-----------|
|      |              | Saison | ug/g      | ug/g      |
|      | Plant        | Spring | 1567.50   | 0.00      |



# Results – Spring emergence 2015 Experiment 2

#### 2015 weed spring emergence following 2014 treatment in site #1



#### ...in site #2



Anova by series of data and LSD test, P = 0.05

# Results – Spring emergence 2016 Experiment 2

2016 weed spring emergence following 2015 treatment in site #1



# Results – During green manure growth

Weed abundance and biomass according to treatments in <u>site #1</u> during green manure growth in spring 2015



# Weed abundance and biomass according to treatments in <u>site #2</u> during green manure growth in spring 2015



#### Presentation Outline

- Biofumigation
- Impact on weeds
- Objectives

#### 1: Greenhouse experiment 2: Field experiment

- Materials and methods
- Results
  - Seedling survival
  - Seeds Reproductive effort

Key messages



- Materials and methods
- Results
  - Biofumigant effect ITC analyses
  - Spring emergence
  - Weed growth and establishment during green manure

# Key messages

#### Experiment 1:

 Biofumigation acts on fitness, reproductive effort and seed production = leads to change in field population

#### Experiment 2:

- Sulfur!!!
- Without biofumigant effect, competition similar to oat (2014)
- Variability between sites (between species)
- In 2015, greater impact on weed establishment and growth during green manure



# Ackowledgments

- Laurence Jochems-Tanguay, IRDA
- Patrick Dubé, IRDA
- Farm workers and technician, IRDA
- Summer students
- Financially supported by
  - Organic Science Cluster II (AAC)
  - IRDA
  - UPA
  - Agrocentre Fertibec inc. Seminova











