

Fertilization management of organic greenhouse soil-less cucumber

Martine Dorais¹
Mireille Thériault¹, Julie Lefort² and Steeve Pepin³

¹Agriculture and Agri-Food Canada

²Les Serres Lefort

³Universit/ Laval

Organic greenhouse farming - Canada

~ 214 ha (15%)

Challenge of organic greenhouse vegetable farming

Soil nutrient release that will perfectly match plant nutrient uptake, without any leaching or emissions into the environment

- ✓ High mineralization rate → High nutrient plant demand
- ✓ Optimal fertilization → Limit salinization + GHG emission
- ✓ Optimal irrigation → No nutrient leaching (e.g. N, Ca, Mg)

Fertilization management → 1 Fruit quality

Variation of the N content during three consecutive crops

N-mineralisation content in the top soil (0-25 cm) and in the second layer (25-50 cm) during three years of organic greenhouse trials of successive tomato – sweet pepper – tomato crop production. (Voogt 2014)

Soil fertility – Organic greenhouse soil-grown vegetables

Average yearly N and P inputs and uptake, in eight organic vegetable greenhouses (2002–2009). Inputs are divided over total manure, compost and additional fertilizers, compared with the estimated available N and P by fertilizer mineralization and soil organic matter (SOM) and the soil buffer (for P the hatched bar). The uptake is the result of the monitored crop N and P removal.

Mutual ratios of the N P and K supplied in total by fertilizers and soil amendments and of the crop demand, based on the crop removal, at the eight monitored greenhouses.

⇒ Soil nutrient release that will better match plant nutrient uptake

Material and Mehods

- Peat-based growing media
- Experiments 1 (summer) & 2 (winter) Fertilization events

 - a) 1 wk interval c) 3 wk interval
 - b) 2 wk interval
- d) 4 wk interval
- Experiment 3 (winter) High & Low N X 2-wk & 4-wk intervals
- Organic amendments same total amount of nutrients per year

```
> 995 kg N/ha 299 kg P<sub>2</sub>O<sub>5</sub>/ha 782 kg K<sub>2</sub>O/ha (experiment 1)
```

- > 793 kg N/ha 254 kg P_2O_5 /ha 370 kg K_2O /ha (experiment 2) > 793 kg N/ha 254 kg P_2O_5 /ha 370 kg K_2O /ha (experiment 3 high N; 100%) > 662 kg N/ha 211 kg P_2O_5/ha 362 kg K₂O/ha (experiment 3 – low N; 83%)
- Latin square 4 x 4 : 278 m² greenhouse per experiment
- 43-53 plants/e.u. (exp 1); 21/26 to 42/53 plants/e.u. (exp. 2 & 3)

Organic fertilizers

Linear correlations between the total fruit yield (kg/m²) and total N, P and K uptake (kg/ha) (Voogt 2014)

Measured parameters & Data analysis

- Mineral analysis Soil samples (0-20 cm) every week
 - ✓ lons were extracted using the 2:1 method
 - ✓ Ion chromatography analyser ICS-1100 (Dionex)
 - ✓ Soil pH and EC on the water extract
- Overall microbial activity was evaluated monthly
 - ✓ FDA (fluorescein diacetate hydrolysis)
- Soil respiration (LI-6400 and LI-6400-09) was evaluated twice
- Plant growth was measured every week
 - ✓ leaf length, stem diameter, stem length, number of fruits
- Fruits were harvested every two days
- Dry weight of the stem, leaves and fruits

MIXED procedure (SAS Institute) at P<0.05

Means were compared using the Tukey's multiple range test

Effects of fertilization events – Soil properties

Effects of fertilization events - Yield

Effects of fertilization events – Quality

Soluble sugar (Brix)	3.0	3.0	3	3 0	NS
EC (mS/cm)	4.5				NS
Titratable acid (% citric acid)	0.07		_		NS
Vitamin C (μg/g)	321				0.2871
Phenols (mg EAG/g)	1.20	No significant		0.2142	
Carotenoids (µg/g) Xanthophyll	10.6	effect			0.2974
Trans-β-carotene	29				0.1480
Lutein	30				0.2502
Cis—β-carotene	4.1				0.1981
Winter crop					
Soluble sugar (Brix)	3.2		٠.٤		NS
EC (mS/cm)	4.1	4.1	4.1	4.0	NS
Titratable acid (% citric acid)	0.05	0.05	0.05	0.05	NS
Vitamin C (μg/g)	292	250	215	276	0.3624
Phenols (mg EAG/g)	1.08	1.02	1.00	1.17	0.1465
Carotenoids (µg/g) Xanthophyll	13.7	12.9	14.7	13.0	0.2655
Trans-β-carotene	36	31	44	38	0.0951
Lutein Lutein	29	23	34	33	0.2307
Cis-β-carotene	4.5	3.8	4.9	4.8	0.1915

Effects of a lower fertilization rate

Effects of fertilization frequency treatments

√ Yield

✓ Fruit quality

Effects of N regime X fertilization frequency treatments

✓ Two-week interval fertilization with HN or LN regime increased CO₂ efflux as compared to 4-wk interval

✓ Reduction of N to 83% of the recommended N regime did not affect:

Soil EC

Plant growth

Soil activity • Productivity

Soil N content •

Fruit quality

Research team & collaborators

Dr C. Ménard

M. Thériault, MSc P.P. Dion, PhD student

Professor-Researcher

S. Pepin, ULaval

Isabelle Clermont, MSc.

Les Serres Lefort

Financial support was provided by the Canadian Agri-Science Clusters (Organic Science Cluster II) and Les Serres Lefort.

Martine.Dorais@agr.gc.ca Martine.Dorais.1@ulaval.ca

