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ABSTRACT: This study evaluated quantitative relationships between soil surface reflectance and 
inherent soil properties to produce digital soil maps supporting precision soil conservation and sustaina-
ble water management. Relationships were studied at the laboratory, field and watershed scales. Successive 
radiometric measurements were taken in the laboratory on 119 undisturbed soil cores following a drying 
process. Multi-temporal spectral indices were developed from reflectance values quantifying soil moisture, 
organic matter content and texture. These indices were subsequently validated under uncontrolled mois-
ture conditions on 47 field sites. At the catchment scale (43 km2), the indices were systematically derived 
from multiple Landsat images acquired under wet and dry conditions. The indices were significantly 
related to soil moisture (R2 = 0.80) and organic matter content (R2 = 0.89). Prediction models derived 
from satellite imagery confirmed the potential of spectral indices for mapping soil texture, organic matter 
content and drainage.

More specifically, spectral indices revealing soil 
texture, OM, color and moisture were developed 
under controlled environment and validated 
under field conditions. Finally, the relevance of 
these spectral indices for digital soil mapping was 
assessed at watershed scale from a series of Land-
sat images and morphological soils datasets.

2 SITE DESCRIPTION

The Ewing Creek watershed (42.5 km2) is located 
in the southern part of the Province of Quebec 
(45°09′21″N 73°04′36″W). It is a tributary of the 
Pike River, which flows into the Missisquoi Bay of 
Champlain Lake (Fig. 1). Corn and soybeans are 
the dominant crops in the watershed, which ranges 
in elevation from 29 to 60 m. Mean annual pre-
cipitation and temperature are 1150 mm and 6°C, 
respectively. Land drainage is the main limiting 
factor of crop productivity and most fields benefit 
from systematic tile drainage. The spatial distribu-
tion of the soil sediments follows a topographic 

1 INTRODUCTION

Currently available soil maps do not portray the 
spatial resolution of soil biophysical properties 
needed to support site-specific management. 
Updating and upgrading these soil maps using con-
ventional soil survey methods is slow and resource-
consuming. Therefore, alternative methods need to 
be developed using the relationship between soil 
properties and ancillary data acquired by satellite, 
airborne and terrestrial sensors (McBratney et al., 
2000). As soil reflectance depends on soil mois-
ture, organic matter (OM) content, soil color and 
texture, it is hypothesized that 1) permanent (OM, 
color and texture) and non permanent (moisture) 
soil properties can be derived using multitemporal 
soil reflectance datasets and 2) reflectance meas-
urements taken under dry soil conditions can be 
used to normalize soil effect and give a more robust 
estimate of soil moisture (Liu et al., 2002, Lobell & 
Asner 2002). The goal of this study was to deter-
mine the relationship between soil properties and 
reflectance over a range of moisture conditions. 
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gradient, from marine (Champlain Sea) to lacus-
trine (Lampsilis Lake) deposits overlying glacial 
till dating from the Quaternary period. This dis-
tribution largely explains the spatial variability in 
soil properties in the study area. Soils are ranging 
from poorly to imperfectly drained Gleysols, Pod-
zols or Brunisols and are generally rich in carbon-
ates. Thin organic deposits (bogs or marshes) are 
present in old abandoned fluvial channels or pits. 
In upper areas, the Proto St. Lawrence River has 
exposed glacial deposits, carrying clays and leaving 
behind coarse-loamy to loamy-skeletal materials. 
The most recent soil survey information avail-
able in this area has been published at a scale of 
1:63,360 in 1948.

3 METHODS

Relationships between soil properties and radio-
metric signal were studied with a three-step/scale 
approach. The first step investigated relationships 
between soil properties and reflectance values 
measured in the laboratory, under controlled 

Figure 1. Location of the Ewing Creek watershed in southern Quebec, Canada; soil map showing the spatial distribu-
tion of family particle size classes of major soil surface materials (1948).

moisture conditions, to derive three normalized 
spectral indices. The adequacy of these indices in 
explaining soil properties was then investigated 
under uncontrolled moisture conditions during 
two field campaigns (validation). Finally, the spec-
tral indices derived from calibration were applied 
on Landsat images to evaluate their relevance for 
creating soil property maps. All statistical proce-
dures were realized with the R statistical software. 
SAGA GIS was used for spatial data treatment and 
ATCOR 2/3 was used for computing radiometric 
and atmospheric corrections.

3.1 Laboratory experiment

Undisturbed soil samples (n = 119) of the surface 
layer (0–10 cm) were located by GPS and collected 
along eight transects using 800 cm3 copper cores. 
Soil morphological data acquired by Michaud et al. 
(2009) were used to guide the soil sampling strat-
egy to assure soil diversity in terms of soil texture, 
OM and drainage. The soil cores were immersed 
in water for 48 hours to reach saturation. During 
the drying process, 12 reflectance measurements 
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(350–2500 nm) were collected using the ASD pro 
FR portable spectroradiometer and soil samples 
weighed for soil moisture determination. The final 
reflectance measurement was taken on dried sam-
ples (103°C for 48 hours). Spectral signatures were 
treated to simulate Landsat 7 bands and used to 
develop spectral indices expressing soil moisture, 
OM, soil color and soil texture. Following the 
lab experiment, laboratory analyses were used to 
determine the sand (%), silt (%), clay (%) and OM 
(%) for each soil core. Soil color was determined 
under wet and dry conditions using the Munsell 
Color System (hue, value and chroma).

3.2 Field scale experiment

Spectral indices were developed and validated from 
field data collected during two field campaigns in 
May and June 2009. Radiometric measurements 
simulating the sensors of Landsat TM7 were col-
lected with a ASD FR Pro portable spectroradi-
ometer on 47 sites selected from the population 
of 119 core sampling sites used for the lab experi-
ment. The volumetric soil moisture content was 
estimated on site from four electrical conductivity 
measurements using a portable probe (ThetaProbe 
ML2x) in the first 6 cm. Laboratory analysis were 
used to determine the soil texture and OM.

3.3 Watershed scale experiment

Landsat images, a digital elevation model and soil 
morphological data were combined to produce 
maps of textural properties for the A and B hori-
zons, as well as drainage classes. Radiometric and 
atmospheric corrections were applied to a series of 
9 (1990–2001) Landsat spring images (TM5-TM7) 
representative of contrasting soil moisture con-
ditions. Each image had its land use classified to 
isolate bare soil. Moisture conditions were docu-
mented from historic climatic data and reflectance 
values. A single image was selected to represent 
the driest condition, while the others were asso-
ciated with wet conditions. Spectral indices were 
calculated for every Landsat image following the 
method developed in the lab experiment. Land-
scape units and elevation classes were derived 
from the digital elevation model. Five landscape 
units were retained from the LandmapR toolkit 
(MacMillan, 2000). Conceptually, both landforms 
and elevation classes were expected to correlate 
with the domain of superficial deposit as well as 
soil moisture conditions.

Both spectral and topographical datasets were 
related to morphological soil data through discri-
minant analysis. Significant discriminant functions 
were subsequently inverted and applied to remote 
sensing datasets to produce soil property maps. 

Since the method is applicable solely to bare soil 
conditions, several classifications were produced 
by combining variables from different images in 
a stepwise approach. Optimal classifications were 
selected according to three statistical parameters: 
the global success of the classification (%) and the 
intra-class classification success (%). Finally, inde-
pendent analytical and morphological soil datasets 
were used to evaluate the efficiency (analysis of 
variance) and the accuracy (confusion matrix) of 
the soil property maps.

3.4 Spectral indices and statistical analyses

Spectral indices for all three study scales were 
developed under three assumptions: 1) soil mois-
ture, OM, soil color saturation and heavier soil 
texture tend to be negatively correlated with soil 
reflectance (ρ), 2) spectral data representative of 
the driest soil condition best reflect permanent 
properties effect and 3) the combination of wet 
(ρwet) and dry reflectance (ρdry) would yield a nor-
malized brightness index (NBI) which represents 
soil moisture. Under these assumptions, spectral 
measurements were used to derive three new spec-
tral indices which are related to soil OM content 
(OMI, Eq. 1), texture and color (COI, Eq. 2) and 
volumetric moisture content (NBI, Eq. 3).
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where TMi is the reflectance value measured in 
the ith Landsat bands in dry or in wet condition. 
Linear regression analyses were used to evalu-
ate relationships between soil properties and the 
spectral indices. Two criteria were used to test 
the quality of  prediction: the root mean square 
error (RMSE) and the coefficient of  determina-
tion (R2). The effect of  the experimental design 
(lab vs field) on spectral X soil properties relation-
ships was also investigated through an analysis of 
covariance (ANCOVA), using soil moisture as the 
covariate.

4 RESULTS AND DISCUSSION

The training dataset for the lab experiment (n = 119) 
showed a wide range of soil types. Overall, 114 soil 
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samples were classified as mineral soils, while five 
were considered as organic. Textural classes varied 
from silty clay to loamy sand, with silty clay loam 
dominating. Overall OM levels were relatively low 
(median: 3.4%, mean: 6.4%), ranging from 1.5 to 
73.2%. The validation dataset (field experiment, 
n = 57) exhibited similar statistics.

4.1 Reflectance measurements

Figure 1 shows the reflectance of  four represent-
ative soil textural groups (sandy, loamy, clayey 
and organic soils) under wet and dry conditions. 
As expected, wet soils have a lower reflectance 
value than dry soils. Reflectance values also show 
a decreasing trend with heavier soil texture (sandy 
and loamy > clayey > organic), under both soil 
moisture conditions, but they increase with wave-
length. The B5 and B7 bands were more sensitive 
to soil moisture and soil texture variation. These 
observations support the assumption that reflect-
ance values can be used to monitor permanent 
and non permanent soil properties. However, the 
dynamics of  the spectral shape vary amongst soil 
types and soil moisture contents. These variations 
suggest an interaction between soil moisture, 
soil texture and OM on reflectance. The analy-
sis of  reflectance data showed that the inverse 
squares of  the B1 (blue) and B2 (green) bands 
were correlated with OM. This spectral region 
corresponds with the results of  Bartholomeus 
et al. (2008). The B2 band was selected since the 
reflectance value of  the B1 band is influenced by 
the atmosphere.

4.2 Organic Matter Index (OMI)

The OMI calculated from eq. (2) was linearly 
correlated with OM. OMI explained 87 and 81% of 
the total variance under laboratory and field con-
ditions, respectively, with a relatively low RMSE 
(3.7%) and without any bias related to soil texture. 
Distribution of error, with respect to the OM con-
tent, remains relatively low. For example, 60% of 
the sample population, which has a residual value 
lower than 1%, has a median value of 3% (Fig. 3a). 
The difference in the ANCOVA models slope 
values between the lab and the field experiments 
suggests that the field method tends to under-
estimate OM (Table 1). This discrepancy can be 
explained by the relatively higher soil moisture for 
the dry image of the field experiment (23.6% ± 5) 
in comparison to the laboratory measurements 
(0.5% ± 0.69). By lowering the reflectance value, 
moisture decreases the sensitivity of the index and 
the threshold detection of organic matter.

4.3 Normalised Brightness Index (NBI)

The normalization of wet reflectance by that of 
the corresponding dry soil led to the development 
of a novel soil moisture index (NBI) exhibiting a 
significant linear relationship with soil moisture. 
This index explains 79 and 57% of the total vari-
ance observed in laboratory and field conditions, 
respectively, without any bias for soil texture or 
OM, and with a relatively low error (5.6 and 3.6%, 
respectively). The far-infrared band (TM7) yielded 
the best results but satisfactory regressions could 
also be modelled using the mid-infrared (TM5) 
and the near-infrared (TM4). Significantly differ-
ences in ANCOVA regression parameters for lab 
and field experiment were observed (Table 1) and 
attributed to measurement error (Thetaprobe sen-
sor on gravelly sites) of soil moisture and also to 
the lower range of observed soil moisture condi-
tions in the field experiment. To ensure that soil 
moisture contents in dry measurement had a con-
sistent effect on error, 11 new series of the nor-
malized soil moisture indices were calculated by 
permuting “dry reflectance” (ρdry) measurements 
with reflectance taken at time 1 to 11. Soil mois-
ture of ρdry content had no effect on the strength 
of the regression equations as shown by the R2 
and RMSE obtained for each of the 11 regression 
equations (Fig. 3b).

4.4 Spectral indices and prediction of soil 
properties at watershed scale

The success of  classification obtained by predic-
tion models derived from discriminant analy-
sis confirms the relevance of  spectral indices 

Figure 2. Reflectance spectra of simulated Landsat 
7 bands associated with four representative soil samples 
under wet and dry conditions.



385

Figure 3. Proportion of training samples and associated observed median values of OM as a function of 
minimum absolute residual values of OM (a). Coefficient of determination and root mean square error for normal-
ized soil moisture indices as a function of average soil moisture derived under eleven distinct permutations of “dry” 
measurement (b).

Table 1. Regression parameters of linear regression models explaining organic matter content and soil moisture from 
spectral indices derived under laboratory and field experiments.

Soil properties Organic matter (%) Soil moisture (%)

Regression parameters R2 RMSE Slope Intercept n R2 RMSE Slope Intercept n

Laboratory 0.87 3.66 1479*** –1.15* 119 0.79 5.58 7.27*** 106*** 1353

Field 0.81 3.97 1051*** –0.81  46 0.58 3.57 2.65*** 54.3***  46

Figure 4. Mean values of the sand, silt and clay content in the A and B horizons of independent samples according 
to the predicted texture groups (1: Sandy, 2: Coarse loamy, 3: Loamy, 4: Fine loamy, 5: Fine clayey, 6: Very-fine clayey). 
Texture groups with different letters in the same plot have significantly different mean values (PTukey < 0.001).
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to recognize three soil properties: A horizon 
texture, B horizon texture and drainage condi-
tions. The overall successes of  the classification 
were respectively 55, 46 and 74%. The successes 
reached 91, 77 and 90% respectively when includ-
ing predicted values deviating from one class, 
suggesting that classifications were relatively con-
sistent. Soil variables were best explained by COI 
(eq. 2, representing texture and OM) and NBI 
(drainage). Elevation class and landscape enti-
ties also contributed significantly to the predic-
tion of  soil texture in the B horizon and drainage 
conditions. Both variables can be related to water 
dynamics and pedogenetic processes. Sand, silt 
and clay contents of  independent samples from 
A and B horizons were shown significantly dif-
ferent among predicted texture groups through 
ANOVA (Fig. 4). This indicates that spectral 
indices combined in a spectro-temporal approach 
can be used to delineate soil properties. Larger 
standard deviation is related to groups having 
fewer samples.

5 CONCLUSION

This study evaluated the potential of multi-
temporal reflectance measurements to reveal per-
manent and non permanent soil properties. Spec-
tral indices were linearly related to soil moisture 
and OM, without any bias related to other soil 
properties. The relevance of these spectral indices 
for digital soil mapping was further demonstrated 
using a series of Landsat images applied to bare 
soils of a watershed in southern Quebec. Digital 
soil maps generated with this approach provided 
spatial guidelines to implement soil zone manage-
ment within field units, with potential benefits to 
crop profitability, soil quality and preservation of 
water quality.
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