Evaluation of seed treatments in hulless pumpkin seed production

J. Boisclair^{1*}, G. Richard¹, M. Grenier¹ and L. Belzile¹

1. Organic Agriculture Innovation Platform, Research and Development Institute for the Agri-Environment (IRDA), Saint-Bruno-de-Montarville, Que., CANADA * josee.boisclair@irda.qc.ca.

Cultivons l'avenir 2 Une initiative fédérale-provinciale-territoriale

Canada

Québec :::

Introduction

Styrian hulless seed pumpkin has been cultivated for many generations in Eastern Europe. Pumpkin seeds have high nutritional value: high protein content, zinc, vitamin E, and unsaturated fatty acids (Bavec et al. 2007, Beavers et al. 2008). Hulless pumpkin seeds offer an additional interest as they are easier to process and make oil extraction simpler. While consumers are concerned about food quality and nutritional value, the production of this type of pumpkin for snack and processing markets offers an interesting avenue for crop diversification on organic field crop farms and for additional revenue on small organic community supported farms (CSA).

Previous work (Boisclair et al. 2013) has shown that hulless pumpkinseed production from transplants has a good potential for the diversification of organic farms in Québec. There is also a growing interest from buyers to provide local supply. However, seedlings are very sensitive to soilborne pathogens that cause damping-off and there is actually no efficient and organic seed treatment available. In order to favor hulless pumpkinseed production on large scale, sowing problems have to be looked at.

Objectives

The main objectives of this study were to:

- to evaluate in growth chamber three approaches to control damping-off in Styrian pumpkin seedlings: coating with copper oxychloride Copper Spray®), priming seeds with or without biological fungicides coating and pregerminating seeds with or without solutions of biological fungicides;
- to compare sowing Styrian pumpkin with seeds coated with copper oxychloride, pregerminated seeds and transplanting in field situation.

Material and Methods

Experimental site: Platform for Innovation in Organic Agriculture (Saint-Brunode-Montarville, Que.), 2014 and 2015.

Soil type: sandy loam

Cultivar: Cucurbita pepo cv Styriaca

Experimental Design: Randomized Complete Block Design (RCBD)

Table 1. Description of growth chamber and field experiments.

	chamber ex nental unit: 25 to 36	•	Field experiments experimental unit: 3 rows of 12 plants		
Efficacy + ph	ytotoxicity tests	Efficacy tests	•		
Copper chloride (Copper Spray®) ¹	Seed priming with/without coating with biofungicides ²	Pregerminated seeds with/without biofungicides ²	Copper Comparison of copen Chloride (Copper Spray®)¹ transplantation		
	and percentage of biomass 2 week	of germination, gro	owth stage,	DATA: striped cucumber beetle pressure ⁴ , defoliation ⁴ , bacterial wilt (BW) incidence and mortality, seed yield	

¹ Treatments: 50% minimum dose, minimum dose, maximum dose, 2x minimum dose, 2x maximum dose, control (water and kaolin), control (water only), untreated seeds, untreated seeds in potting soil. ² Biofungicides tested: Actinovate® (*Streptomyces lydicus*), Serenade® Max (*Bacillus subtilis*), Mycostop®

³ Only summary results from growth chamber experiments are presented (Table 1). ⁴ Data not presented.

Growth chamber experiments

Table 2. Summary of the results of phytotoxicity and efficacy tests done in growth chamber experiments, 2014 and 2015.

	Phytotoxicity tests	Efficacy tests			
Copper chloride (Copper Spray®)	No significant effect on dry biomass and germination percentage	 percentage of germination varied between doses of copper oxychloride, from 3 to 22.0% no germination occurred in the untreated control. 			
Seed priming with/without coating with biofungicides No significant effect on dry biomass and germination percentage	no germination				
Pregerminated seeds with/without biofungicides*	NA	 average percentage of germination of 72%. 			

Field experiments

Table 3. Effect of five doses of Copper Spray® (copper oxychloride) used as seed coating combined with Surround® (kaolin) on percentage germination of field pumpkin seedlings, 2014 and 2015.

	2014			2015					
	% germination (n=36)				% germination (n=36)				
Treatment Copper Spray® doses	Mean % interval (Mean %		Confidence interval (95%)	
Copper opraye doses	germination	Lower limit	Upper limit	Contrast	germination		Lower limit	Upper limit	Contrast
50% minimum dose OCCa	31	-1.28	-0.31	С	6		-3.51	-1.93	bc
minimum dose (500 g/ 100 kg of seeds) ^a	36	-1.05	-0.10	bc	5		-3.68	-2.02	cd
maximum dose (750 g/ 100 kg of seeds) ^a	53	-0.35	0.58	а	10	-	-2.81	-1.51	abc
2x minimum dose ^a	51	-0.41	0.52	а	17	No.	-2.13	-1.01	а
2x maximum dosea	53	-0.32	0.60	a	13	Par.	-2.50	-1.29	ab
control (water and kaolin)ab	0	Ø	Ø	Ø	0		Ø	Ø	Ø
control (water only)ab	0	Ø	Ø	Ø	0		Ø	Ø	Ø
untreated seedsab	0	Ø	Ø	Ø	0		Ø	Ø	Ø
The state was a first	Type III tests for fixed effects (Pr > F):			Type III tests for fixed effects (Pr > F):					
	0.0055			134		0.005	55		

^a These treatments were applied while some pathogens were present in the field. The average weight in one column followed by the same letter are not significantly different ($\alpha = 0.05$).

Table 4. Percentage of mortality and development from sowing and transplantation of pumpkin (Cucurbita pepo cv Stvriaca), 2015.

	Percentage	Growth stages			
Treatment	of mortality	5-leaf	Flowering	Fruit set	
Transplants	10	26/06	09/07	30/07	
Copper oxychloride treated seeds	89	09/07	23/07	13/08	
Pregerminated seeds	36	09/07	23/07	13/08	

Table 5. First observation of bacterial wilt (BW) symptoms and percentage of plants in each coded class of BW obtained with a multinomial logit regression model, 2015.

Treatment	First observation of	Percentage of plants with ordered values for BW incidence			
	BW symptoms	0 ^a	1 ^b	2 ^c	
Transplants	July 23	76.74	20.93	2.33	
Copper oxychloride treated seeds	July 30	53.33	40.00	6.67	
Pregerminated seeds	July 9	76.92	19.78	3.30	

Type III tests for fixed effects: Pr > r = 0.2064

Contrasts	Odds ratio*	Pr > t
Transplants vs copper oxychloride treated seeds	2.6019**	0.0858
Transplants vs pregerminated seeds	0.9948	0.9873
Copper oxychloride treated seeds vs pregerminated seeds	0.3823	0.0932

^a healthy plant, ^b plant with BW symptoms, ^c dead plant from BW. Treatment effect is not significant ($\alpha = 0.05$).

Table 6. Mean fruit and seed yields, average pumpkin and seed weight, with standard errors in parentheses probability values for F-tests and t-tests for contrasts

	parentheses, probability values for F-	27					
	Treatment	Marketable pumpkin yield	Average pumpkin weight	Seed weight	Seed yield		
		kg/ha	kg	g/1000 seeds	kg/ha		
	Transplants	59 548 (6 700)	4.260 (0.239)	198.5 (6.4)	1 062 (88)		
	Copper oxychloride treated seeds	18 250 (6 700)	5.561 (0.438)	206.2 (12.0)	234 (88)		
	Pregerminated seeds	35 046 (6 700)	4.727 (0.289)	208.5 (7.6)	574 (88)		
	P - values						
	F test for treatment effect	0.0063	0.0839	0.622	0.0007		
	Contrasts (P > t)	A STATE OF THE STA					
i	Transplants vs copper oxychloride	The State of the s	and a broad the	Y			
9	treated seeds	0.0022	0.001	0.5973	0.0002		
	Transplants vs pregerminated seeds	0.023	<0.0001	0.3888	0.0039		
	Copper oxychloride treated seeds vs pregerminated seeds	0.0829	<0.0001	0.8792	0.0194		
		AND DESCRIPTION OF THE PARTY OF	CONTRACTOR OF THE PERSON NAMED IN COLUMN 1		The second secon		

Conclusions

- Growth chamber experiments showed that the best strategy to increase seed germination was the use of pregerminated seeds.
- No phytotoxicity symptoms were observed for all trials conducted in growth chamber experiments.
- Seeds coated with different doses of oxychloride copper and sown in the field had mean germination percentage varying between 31% and 53% in 2014, and 6% and 17% in 2015.
- Since the seedling emergence was low and uneven in both seeded treatments of 2015 field experiment, good mechanical weeding was not possible in these treatments due to the heterogeneousness of plants.
- The incidence of bacterial wilt and seed yield were 46.67, 23.08, and 23.26% and 234, 574 and 1062 kg/ha in copper oxychloride treated seeds, pre-germinated seeds and transplants treatments respectively.
- Lack of maturity of the seeded plants could also be a concern in case of early autumnal frost.

References

Bavec, F., S. Grobelnik Mlakar, C. Rozman and M. Bavec. 2007. Oil pumpkins: Niche for organic producers. In: Issues in new crops and new uses. Eds: J. Janick and A. Whipkey. ASHS Press, Alexandria, VA. pp.185-189.

Beavers, R., J. Mackenzie and A. Hammermeister. 2008. Oilseed pumpkin production: Fertility and pest control. Organic Agriculture Centre of Canada, Interim Research Report E2008-38.

Boisclair J., E. Lefrançois, M. Leblanc, L. Belzile, G. Richard et Michèle Grenier. 2013. Production biologique de graines de citrouille comme aliment fonctionnel pour le marché de la collation et de la transformation. Projet #6327. Rapport final remis au Conseil pour le développement de l'agriculture du Québec (CDAQ), IRDA. 88 p.

Acknowledgements

Thanks to: numerous IRDA summer students and IRDA agricultural workers,: Isabelle Couture, MAPAQ - Montérégie Est, Diagnostic Laboratory of MAPAQ for its expertise and Dubois Agrinovation for the insect control nets.

⁽Streptomyces griseoviridis) et Rootshield® (Trichoderma harzianum).

^{**} The odds for transplants being in the lower coded class of BW (less bacterial damage) is 2.6 times the odds for copper oxychloride